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Abstract. The Mandelbrot set M is “self-similar” about any Misiurewicz point c in
the sense that if we examine a neighborhood of ¢ in M with a very powerful
microscope, and then increase the magnification by a carefully chosen factor, the
picture will be unchanged except for a rotation. The corresponding Julia set J, is
also “self-similar” in the same sense, with the same magnification factor. Moreover,
the two sets M and J, are “similar” in the sense that if we use a very powerful
microscope to look at M and J, both focused at c, the structures we see look like
very much the same.

1. Introduction
For a quadratic polynomial f,: zz*+c, the filled-in Julia set K, of f, is the set of
non-escaping points under iteration:
K,={zeC|(f(2))sen> is bounded},
where £ denotes the n'® iteration f,o f.o...o f, of f. The Julia set of f, is J,=0K,.
The Mandelbrot set is
M={ceC|0eK,}.

One can generate easily the pictures of Julia sets and the Mandelbrot set by
computers. Figure 1 is a picture of M, Fig.3a—-3d are pictures of J, for various
values of ¢. Globally, J, and M have completely different shapes. However, their
local structures are sometimes very similar. Figure 2 consists of three successive
enlargements of M in a neighborhood of i. A remarkable resemblance with the
Julia set for c=i (Fig. 3a) appears. In fact, this kind of similarity happens for every
value of ¢ which is a Misiurewicz point, that is, for which the point 0 under f; is not
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Fig. 1

¢ |

Fig. 2. Three successive magnifications of M as indicated by the inserted frames. Center: i. Width
of the first picture: 0.5656854~0.1 x 4[/5. Magnification factor: 4\/5

[

c d

Fig. 3a—d. The Julia set J.. a ¢=i. Center: 0, width: 3.0. b ¢=0.11031—-0.67037i. Center: 0,
width: 3.0. c= —1.25. Center: 0, width: 3.6. d c= —0.481762—0.531657i. Center: 0, width: 3.0

periodic but falls eventually into a periodic orbit. The main topic of this paper is to
analyse this similarity.

The point ¢=i is one of the simplest examples of Misiurewicz points: for
fi:z—>2z*+i, the orbit of 0 is: O+>ir>i— 1+ —ir>i—1. We have £,*(0)= £;%(0). The
point c= —2is another one: for f_,: z+>2z? —2, the orbit of 0is: 0> — 2+—2—-2.In
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Sect. 5 we will give further examples. Using the Montel theorem, one can show that
the set of Misiurewicz points forms a countable dense subset of the boundary of M
[M].

In this paper, we will show that for every Misiurewicz point ¢, a powerful
magnification of J, focused at ¢ and the same magnification of M focused also
at ¢ will give very similar structures (up to a multiplication by a complex number),
and the more powerful the magnification is, the more similar the structures are. We
say that J_and M are asymptotically similar about c. Moreover, both J and M are
asymptotically self-similar about c in the sense that if we increase successively the
magnifications to J, (respectively M) focused at ¢ by a carefully chosen factor, what
we see are more and more the same.

Section 2 consists of definitions of asymptotic similarity and asymptotic self-
similarity, and introduces the Hausdorff-Chabauty distance in order to compare
two closed sets asymptotically. Section 3 discusses the asymptotic self-similarity of
any Julia J, about any repulsive periodic point, and about any point which is
eventually repulsive periodic. This can be applied immediately to the case where ¢
is a Misiurewicz point, since the point ¢ is eventually repulsive periodic under f,.
Section4 contains a key proposition which makes connections of the self-
similarity between parameter space and dynamical spaces. This proposition is
stated in a high-dimension form, in order to be applied eventually to other topics.
Section 5 shows finally the asymptotic similarity between M and J, about ¢ for c a
Misiurewicz point, by applying the result of Sect. 4. Theorem 5.5 is a review of the
principal steps of the whole proof. At the end of Sect. 5 we calculate some
specific examples. Section 6 consists of some related results, and a discussion
of the similarity problems about other points of M.

The main part of this work was done in 1984, under the direction of Professor
A.Douady. A preliminary version of this article ([T2]) was inserted in [DH2].

The author would like to thank A. Douady for his introduction and his
powerful support of this work; without him this work would not have existed. I
also thank J. H. Hubbard, M. Shishikura, Y. Fisher, B. Bielefeld, and B. Branner
for their helpful discussions: some of the calculations are made directly by M.
Shishikura. I am indebted to H.-O. Peitgen and his group in Bremen for hospitality
and great interest in the work.

2. Hausdorff Distance and Asymptotic Similarity

In this section we discuss the definition of asymptotic similarities of closed subsets
of € and some immediate results.

Definition { (Hausdorff distance). Denote by & the set of non-empty compact
subsets of C. For 4, Be #, we define the semi-distance from A4 to B to be

8(4, B)= sup d(x, B)

xe A

and the Hausdorff distance of 4, B to be
d(A4, B)=sup((4, B), 3(B, 4)).

This distance makes & a complete metric space. By the definition, 6(4, B)<e
signifies that A4 is contained in the e-neighborhood of B.
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The next definition is for comparing two closed subsets of € within a bounded
region.

Definition 2. Forr a positive real number, we denote by D, the disc centered at 0 of
radius r. For any closed set ACC, we define a compact set

A,=(AnD,)udD, . (1)

(It is for a technical reason that we add oD, to AnD,.) Or, in order to analyse the
local behavior of A near a point ae€ A, we use the translationt_,:z+>z—a to
translate a to the origin and define

(¢t -4A4),=((t-,4)"D,)UD, .

For A, B two closed sets in €, we have A4,,B,€ #. We can then define the
Hausdorff-Chabauty distance of 4, B in the window of D, to be (Fig. 4)

d(A4, B)=sup(6(4,, B,), 6(B,, 4,)).
Definition 3. Assume g¢=|gle”, |o|>1, 0<0<2n.
1. A closed subset B of € is g-self-similar about 0 if there is >0 such that
(¢B),=B,. @

Bis also considered to be self-similar about 0 with the scale g. This says that under
the magnification with the factor |o| together with the rotation of angle 0 the set B
remains unchanged within D,.

2. A closed subset 4 of € is asymptotically g-self-similar about a point xe 4 if
there is r>0 and a closed set B such that

(¢"t_.A4),—»B, while n—o0 3)

for the Hausdorff distance. The set B is automatically g-self-similar about 0, it is
called the limit model of A4 at x.
3. Two closed sets A4 and B are asymptotically similar about 0 if there is r >0 such
that

lim d/(tA4,tB)=0. 4

teC,t—>

7N

Fig.4. A and 4,
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Remark. The property of similarity does not depend really on the value of r. In fact
if (2), (3), or (4) hold for some value r> 0, then they hold for any 0<7' <7, and (4)
holds for every r > 0, since t — co. Moreover, if B satisfies (2) for some value r >0, we
can set

B= | ¢'(B). G
Then B'nD,=BnD, and (¢B'),= B, for any s> 0. If A, B satisfy (3) for some value
r>0, then by replacing B by B, the equality (3) will hold for every value s>0
instead of r (since |g|"— oo while n— o).

Examples

1. The disc D, itself is trivially self-similar. A line, a segment are self-similar. A
curve with a tangent is asymptotically similar to its tangent.

2. The spiral S(1)={e**|xeIR} is e*-self-similar about 0 if |e*|>1 (Fig. 5).

3. The Cantor set C. C is self-similar about any rational point, and is not self-
similar about any irrational point xe C. Let x=0.t,t,t5... be the exparnsion of
x € C in base three. Then each ¢ is either 0 or 2. x is rational if and only if this
expansion is eventually periodic, i.e. there are [ and p such that t,=t, . , for each
nz1. The minimal p is the eventual period of x. Hence C is 3?-self-similar at x € C if
and only if x is rational and the eventual period of x divides p.

Lemma 2.1. Assume A, B closed. Fix r>0. We have
1. For every ae AnD,, d(a, B,)<d(a, B)<d(a, BND,).
2. A, B,)< sup d(a,B)<d(AnD,, BnD,).

aeAnD,

Proof. Left to the reader. [

Proposition 2.2.

1. For A, B closed subsets of C, if there are r>0, g, |o|>1 such that

lim d(o"A,0"B)=0 (6)
then
lim d,(tA,tB)=0, 0
t—>o0,teC

i.e. A and B are asymptotically similar about 0.
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Fig. s, a e(logl.2+m'/4)x; b e(lng(41/7)+ni/4)x
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2. Any asymptotically self-similar set is asymptotically similar to its limit model.

Proof.

1. For each ¢>0, there is N >0 such that if n> N then §((¢"A4),, (¢"B),)<e. If [t|> T
=|o|" then |o|"<|t|<|o|"*! for some n>N. Hence for each xe(tA)nD, we have
x=ta=(t/@")o"a with a € A and

n
le"alérl—gl—ér.

[t]
Hence ¢"ae(p"4)nD,. From

((¢"A),.(@"B),)<e
we get

d(¢"a,(¢"B),) <¢.

Since |t| = |o|", we have

t — t —
“n (QnB)rnDrz <—y[ QnB> (\D”
4 @

hence
t t
—(¢"B),) = ¢"B) .
(o), = (5es)
So
d(x, (tB) )—d(i o"a <i Q"B)) —d<i "q (i (Q"B)))
T " T\ ; ¢\ )y
t t It| [¢]
sd | ¢"a, — (0"B), | £ — d(¢"a,(0"B),) < —- ¢<|ole,
< <Q,,Q . (0 )> o (0"a, (@"B),) o lol
hence

d(x,(tB),)=d(ta,(tB),) <|gle.
According to the above lemma,
o((tA),(tB))< sup d(x,(tB))<lele.

xe(tA)nD,

This proves d((tA),,(tB),)»0 while t—o0. A similar analysis will give also
o((tB),, (t4),)—0 while t— co.

2. Let A be asymptotically g-self-similar about 0 with the limit model B. Fixe r >0,
with (¢B),=B,. Then (¢"B),=B, and

lim 4((¢"A),,(¢"B),)= lim ((¢"4),, B,)=0

and
lim 6((¢"B),,(¢"4),)= lim &(B,,(¢"4),)=0.

A, B verify (6) and then (7) by part 1. [
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Proposition 2.3. Suppose that U, V are two neighborhoods of 0inIR? and F: U—-V
is a €*diffeomorphism with F(0)=0 and with the derivative TyF = T non-singular.
Then for any closed set ACU the two sets TA and F(A) are asymptotically similar
about 0, i.e. for some r>0 (in fact for every r>0)

lim D,tF(A),tTA)=0.

teC,t—> 0
Proof. Fix r>0. For all ¢>0, then exists 6 >0 such that if <|/x|| <J then
|FO)=Tx| _,
lIxIl

For each yetTAND,, there is xe A such that y=¢Tx with |x||<|t7 Y- | T Yr
=C/|t|, where C=| T !||r is a constant. ~
So for |t|> N=C/6 and any y= the(tTA)mD,, y+0 we have 0< ||x|| <é and

d(tTx, tF(A) <[t - [ F(x)— Tx“-<-|t| ]|

<Ce.

It - [ F(x)—Tx||

_ ¢ IF0—Tx]|
I

Then by Lemma 2.1
o((tTA),(tF(A))< sup d(y,tF(4)<Ce.
y

e€(tTA)nD,

A similar analysis will give 6((tF(A4)),,(tTA),)—0. [

If F(A) is asymptotically self-similar then TA is so too. If in addition T
commutes with the similarity scale, 4 should be also asymptotically self-similar.
More precisely,

Proposition 2.4. Assume that F is as in Proposition 2.3. Suppose that A is a closed
set such that F(A) is asymptotically g-self -similar about 0 with the limit model B.If T
is C-linear, then A is asymptotically g-self -similar about x, and the limit model is
T 1B, i.e. there is r' >0 such that

lim d,(o"(t_,A), T"'B)=0.

n—+o

Proof. By the above proposition, T4 and F(A) are similar about 0. Choose >0
such that

lim d(0"TA,g"F(A))=

and
lim d(¢"F(A), B)=0.

Then
lim d(¢"TA, B)=0.

n—oo

Since T is C-linear, we have ¢"T A= Tg"A. For v >0 such that D,.CT~'D,,
lim d,(¢"4, T~ 'B)=0. O

n—r o
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This proposition will be our essential tool in the next section to prove the self-
similarity of Julia sets. The next proposition gives another way to produce new
self-similar sets:

Proposition 2.5. Suppose that X is a (asymptotically) o-self-similar set about 0.
Then the set

Y={zeC|zeX}

is also (asymptotically ) g-self -similar about 0. In fact for any o' such that ¢"* = o, the
set Y is (asymptotically ) o'-self-similar about 0.

Proof. We will only deal with the self-similar case. Choose r>0 such that
(0X);a= X,s. Remark at first

YnD,={zeC|z’e XAD,},
z€ YND, <> 2°€ XN\D gy <> 0z € XND,a
<(@'2)'e XND,a<>0'ze YND,.

Hence (¢'Y)nD,=YND, and then (¢'Y),=Y,. O

3. Self-similarity of Julia Sets

In this section we discuss the self-similarity of the Julia set of rational maps. And we
apply the result to the case of Misiurewicz points.

Definition and known results (cf. [D] and [DH1]).

1. Let f:€—C be a rational map. A point x € € is periodic of period p if p is the
minimal number such that f?(x)=x. The value 9 =(f*)(x)is called the eigenvalue
of the orbit of x, it does not depend on x, but only on the orbit of x. A periodic point
x is said to be

(a) repulsive if |o|>1,

(b) attractive if 0<|o| <1,

(c) superattractive if g =0,

(d) rational indifferent if g=e
(e) irrational indifferent if p=e

M9 with 6 rational,
28 with 6 irrational.

2. A point x € C s eventually periodic if there are integers />0 and p =1 such that
FP(f(x))=f"(x). We say that x is eventually repulsive (attractive, ..., etc.) periodic if
fY(x) is repulsive (attractive, ..., etc.).

3. Aclosed set 4 is said to be completely invariant under fif f(4)= f ~1(4)=A4.If
A is completely invariant under f it is completely invariant under f* as well.

4. The Julia set J; of f is the closure of the set of repulsive periodic points of f. We
know that J, is completely invariant by f.

5. For P a monic complex polynomial, the filled-in Julia set K, of P is
Kp={zeC|P"(z), neN, is bounded}.

We have Jp=0K, and K, is completely invariant under P.
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Remark. There are several equivalent definitions of the Julia set. The reason
that we choose this one is that repulsive periodic points play the central role in
the study of asymptotic similarity.

Concerning Misiurewicz points, we recall
Definition.

1. The family of quadratic polynomials can be parametrized by (up to affine
conjugacy)
{fe:z—2%+c|ceC}.

K, denotes the filled-in Julia set of f, and J_ the Julia set.

2. The Mandelbrot set is
M={ceC|0eK,}.

3. A point ce M is a Misiurewicz point if 0 is eventually periodic for f, but not
periodic.

A classical result of Douady and Hubbard shows:
Proportion 3.1 [DH1]. ﬁor ¢ a Misiurewicz point,
1. 0 and then c is eventually repulsive periodic;
2. K,=J, i.e. K, has no interior.
Here comes the main theorem of this section:

Theorem 3.2. Let f be a rational map and A be a completely invariant closed set
under f. Assume that x is an eventually repulsive periodic point for f. Then A is
asymptotically self-similar about x, with the scale @ equal to the eigenvalue of the
eventual periodic orbit of x. There is a conformal mapping ¢ defined in a neighbor-

_ 1 _
hood U of x such that ——— ¢(ANU) is the limit model of A at x. Moreover, if x is

P'(x)
periodic, we can choose ¢ such that ¢'(x)=1; if x is eventually periodic with
FPfYx)=f"(x) and if in addition, (f*)(x)=*0, then the limit models of A at x
and at f'(x) are the same, up to a multiplication by (f*)(x).

Hence not only A4 is asymptotically self-similar about x, but its limit model can
be realized locally (via a conformal mapping) instead of just asymptotically.

In the case where ¢ is a Misiurewicz point, we can apply this theorem
immediately to A=J_about x=c and claim that J, is asymptotically self-similar
about c, since the point c is eventually repulsive under f,. Corollary 3.5 below will
give the precise formulas.

To prove Theorem 3.2, we need at first a classical lemma (see, for example,

[D]):
Lemma 3.3.

1. Suppose that U, V are neighborhoods of x in € and g: U—V is a holomorphic
Sfunctionwith g(x)=x and |g'(x)| 0, 1. Set o =g'(x). Then g is locally conjugate to its
linear part z+>gz. Mote precisely, there is a conformal mapping ¢ defined in a
neighborhood of x with @(x)=0, ¢'(x)=1,

pogeop (z)=0z.
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The explicit form of ¢ is given by
@(2)= lim ¢"(g™')'(2)—x),

n—o
where g~ is the unique inverse mapping of g defined in a neighborhood of x. The
mapping @ is called the linearization mapping of g about x.

2. Suppose that U, V are neighborhoods of x, y in € respectively and g:U—-V is
holomorphic with g(x)=y and g'(x)=g"(x)=...=g% " Y(x)=0 and g9(x)+0. Then
there are U, CU, V,CV neighborhoods of x,y respectively, s>0, such that for each
conformal mapping ¢,:V,— D there is (with d choices) a conformal mapping
¢, U,— Dy satisfying

pyogop; (2)=2"
Lemma 3.4. Assume that A is a completely invariant set of f. Then for any U CC, we

have
f(AnU)=Anf(U),

f Y AN fU)NU=A4NU.
Proof. f(ANU)C f(A)n f(U)=An f(U). On the other hand, ye Anf(U)=ye 4

and y= f(x)for some x € U. Since f ~1(4)=A we have x e A and hence y e f(Un A).
So we have also An f(U)C f(AnU),

STHANSONNU=(f "H AN HfUNNU=4nU. O

Proof (of Theorem 3.2).

a) Assume at first that x is periodic.

Let p be the period of x and ¢ =(f?)'(x) be the eigenvalue of the orbit of x. By the
assumption, |o|>1. So f? arises to a homeomorphism in a neighborhood of x.
Remark that x is a fixed point of f?. According to Lemma 3.3 we can find a
neighborhood V of x, a neighborhood ¥, of 0, a conformal mapping ¢ : V-V, such
that ¢(x)=0, ¢'(x)=1 and

@ fAz)=0(p(2)).

Take r>0 such that D,CV,. Set U=¢ '(D,,) and B=¢(AnU). We have
fPU)=¢~Y(D,)CV and U C fP(U). Since A is completely invariant under f?, from
Lemma 3.4, we have f?(AnU)=An f?(U). Hence

fAANUNU=ANnU.
Then
o(fAANU)NU)=9(ANT).
Since ¢ is bijective, we have
o(fAANU)No(U)=o(4)ne(U),

Q((p(A('\ U))nDr/g = ¢(A)nDr/g ’
Q((P(A)mDr/g)mDr/g = (p(A)nDr/g ’
ie.
o(BnD,,)nD,,,=BND,,.
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This proves (¢B),, = B,,,- Hence B is g-self-similar about 0. Apply Proposition 2.4
to ¢:V-V,, AnU—B; we conclude that A is asymptotically g-self-similar
about x, and the limit model is exactly

,()B B=¢(AnD).

b) Assume now that x is eventually periodic.

Let I, p be minimal such that fP(f!(x))= f!(x). Set a= f'(x) and o =(fP?) (). By
the assumption, |g| > 1. Applying the part a) to o, we can find a neighborhood U,
of a, a conformal mapping ¢ such that ¢(a)=0, ¢'(a)=1, the set X =(ANT,) is
o-self-similar and

lim d,(¢"t_,4,X)=0

n—oo

for some ' >0.
b1) Assume at first that the set {x, f(x), ..., f(x)} does not contain any critical
point of f, in other words, (f*)(x)+0.

Then f* maps a neighborhood U, of x homeomorphically to a neighborhood
V,cU, of a, and f{(AnU,)= ANV, Apply Proposition 2.4 to f*:U,—V,; we get

1
lim d,.( ”T_xA, ——,—X) =0 8
"o 0 Q ( ) (fl) (x) ( )
for some r >0. The theorem is then done by setting ¢ =g o f*.

b2) Suppose now (f')(x)=(f")'(x)=...=(f)*"P(x)=0 and (f)(x)*0.
Then by Lemma 3.3 there are U,, ¢,, s, 0<s<r!/ such that

(poflo(p;I:Ds-—)Dsd’ Z_’Zd'

Set
Y={zeC|zeX}.

We have Y= (ANU,), since X=0o f{ANU)=(p(ANU)". According to
Proposition 2.5 the set Y is also g-self-similar about 0. The theorem is then given by
the next formula with ¢ =0, :

lim ds< "o A), ——— () ) =0. 9)

n—oo

Proof of (9). Fix s>0. We prove first

5 ((e"(r_xA»s, (51(7) Y)) 0.

For zeg"(r_,A)nD,, we have z=¢"(y—x) with ye 4 and |y—x|<s/|o|". We can
take n large enough such that ye AnU,. Then

1 1
a ( (zm Y)) =d ( PIE) Y) =

=le"y—x)|- |1—

oo 0"0xY)
0=~ "

20 |,
= x)¢(x)
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while n— co.

A similar analysis will give
(g5 7); @te-etn,) 0.

We are ready now to look at Misiurewicz points:

and then (9). O

Corollary 3.5. Assume that c is a Misiurewicz point. Let 1, p be the minimal integers
such that

2(f(e)=£c).

Set o= f}(c), ¢=(fP)(«). Then
1. Jo|>1.
2. There is a conformal mapping ¢ defined in a neighborhood of o, with @(o)=0,
¢'(0)=1 and

poflop  (2)=ez,
where ¢ is given by

lim Q'(.77(2)~2)
with f,”? the local inverse of f? in a neighborhood of o.

3. (£Y(9)*0. I
4. There arer>0,aneighborhood V of «, a neighborhood U of c, such that f{(U)=V
and

im d, (Q"(T-CJC), 70 olJ. ﬁV))

n—*ow
= lim d,< "t J), e @0 c’JmU) =0. 10)
o 00 Q( )(f;‘l)(c)q’ f( )
Hence J . is asymptotically self -similar about c with the scale ¢ and the limit model
o(J.nV).
Proof.

1. From Proposition 3.1.

2. The existence of ¢ is guaranteed by Lemma 3.3 if we replace g by f? and x by a.
3. Since 0 is the unique critical point of f, and is not periodic, there is no critical
point of f, in

{e. filo), .., fO)} s

hence (fY(c)=*0.
4. It is a consequence of parts a) and b1) in the proof of Theorem 3.2, by setting
A=J.and x=c. [

We give now some examples to illustrate the result of Theorem 3.2.
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Examples

1. Figure 3b is the Julia set for ¢=0.11031—-0.67037i. The polynomial f,

has two fixed points, both repulsive. We choose x=(1—1]/1—4c)/2~ —0.14205
—0.52205i to be one of them. The period p of x is then 1, and the eigenvalue g of x is
2x~ —0.2841—1.0441i. Figure 6 consists of a sequence of magnifications of
J, at x, the magnification factor from one image to the next is ¢ (since
lol~1.082 is too close to 1).

2. Figure 3cis the Julia set for c= —1.25. It has a very different shape from Fig. 3b.
In fact one is a connected set and the other one is homeomorphic to a Cantor set.
But the fixed point x =(1 — [/1—4c)/2 whichis (1 — 1/5)/2 ~ —0.72475in this case is
again a repulsive fixed point for f,=f_, ,5. So the self-similar phenomenon occurs
again around this point. We have p=1 and g~ — 1.4495. Figure 7 consists of three
magnifications of J, at x, the magnification factor from one image to the next is
lo| =1.4495. Since ¢ is real negative, there is a difference of the rotation of angle
180° from one image to the next. Figure 7a and Fig. 7c then look the same.

3. Let us check the Misiurewicz point ¢ =i now. For the polynomial f;: z+>z* +1i,
the orbit of i is: ir»i— 1+ —i+—»>i— 1. The point i is eventually repulsive periodic,
with [=1, p=2, a= fic)=i—1,

0=(f2Y(@)=4+4i=4]/2e"*

and (f))(c)=(f;)(i))=2i. Denote by X the limit model of J; at i—1 and Z the limit
model of J; at i. By our theorem, we have Z =(1/2i)X. Figure 8a is a magnification
of Fig. 3a in a neighborhood of i— 1. Figure 8b is a magnification of Fig. 8a with

o
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Fig. 6. Three successive magnifications of J. for ¢=0.11031—-0.67037i. Center: —0.14205
—0.52205i, width of the first picture: 0.01. Magnification factor: 1.26688, rotation: 44.3349°

Fig. 7. Three successive magnifications of J, for ¢c= —1.25. Center: —0.72475, width of the first
picture: 0.01. Magnification factor: 1.4495, rotation: 0



600 TAN Lei
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Fig. 8a—d. Magnification of J, for c=i. a Center i— 1, widths: 0.001, rotation: 0. b Center i—1,

width: 0.001 /4[/5, rotation: 45°. ¢ Center i, with: 0.0005, rotation: 0. d Center i, width: 0.0005,
rotation: 90°

the factor 4l/§e"i/4. Figure 8¢ is a magnification of Fig. 3a in a neighborhood
of i with the width of the window equal to the half of the width in Fig. 8a.
Figure 8d is Fig. 8c rotated by an angle of 90°. Compare Figs. 8a and 8d, one is
centered at i— 1, the other one is centered at i. This computer experiment con-
firms by impression our result.

4. Key Proposition

This section will give a connection between the self-similarities of dynamic
spaces and parameter spaces, in a high-dimension form.

It is easy to generalize the notion of similarity to closed subsets of an euclidean
space of finite dimension. Let E=C* and & be the set of compact subsets of E.
Denote by D, the ball of E centered at 0 with radius r. Then the Hausdorff dis-
tance and the Hausdorff-Chabauty distance are defined in exactly the same
way. Moreover,

Definition.

1. A linear mapping L: E—E is contracting if there are o<1 positive and C
positive such that for all nelN, ||L*]| £Co". We say that L is expanding if
L is invertible and L™! is contracting.

2. A subset B of E is L-self-similar about 0 if L: E— E is linear expanding and there
is r>0 such that (LB), = B,. We also say that B is self-similar about 0 with scale L.
3. A subset B of E is asymptotically L-self-similar about a point xe Bif L: E—E is
linear expanding and there is r>0, A€ & such that

lim (It_.B),=A4

n—oo
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exists for the Hausdorff distance (where 7, is the translation zr—z +a). The set 4 is
automatically L-self-similar about 0, it is called the limit model of B at x.

Here is our main result of this section:

Proposition 4.1. Suppose 4 is a neighborhood of A, in E, and X CA x E. For each
Ae A, set

X(A)={xeE|(Lx)eX}.
Let u: A—E be a continuous mapping, with u(1,)=0. Set

M=M,={led|u(l)e X(})}. 11
Assume:

Condition 1. X is closed in A x E.

Condition 2. (Existence of a dense set of continuous sections at (44,0).) There is
ACX(Ao), dense in X(A,), such that for each x € A, there exists U, C A, neighborhood
of A, and a continuous mapping h,.: U,—E with h(l,)=x and h(1)€ X(A).

Condition 3. X (1) is L(A)-self -similar about O with a fixed radius ', and A L(4) is
continuous, with

I1IL(A) — LZ0)l| = O(lIA]])
and

1L - L) ™12 <1, (12)
we can assume then for 1€ A (by restricting A if necessary),

ILONS ey, ILA N Su,
and

pypi=u<t.

Condition 4. The derivative S=T, u exists and is non-singular, and
lu(d)— Sl =0(|]|%). (13)

Then there is r >0 such that
a) Under the conditions 1, 2, we have d(X(1), X(10))—0 when A—A,,.
b) Under the conditions 1, 2, 3,4, the set St_ ; M is asymptotically L(,)-self-similar
about 0, and the limit model is X(A,). Precisely we have

lim (L(Lo)" - St 3,M),=(X (%)),
c) If S and L(A,) commute, then M is asymptotically L(1,)-self -similar about A, and
the limit model is S™*X(A,), i.e. there is s>0,

Hm (L(Z)"t - 3,M)s= (S~ ' X(4o));- (14
Remark. Equation (12) is automatically verified if L(1,)=g¢l. Otherwise, let
{l},15, ..., 1} be the set of eigenvalues of L(4,) and

I<|lL|=lhl=... S14.
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If|l,| <|l;|*> then there is a norm such that (12) holds. This requires that L(4,)
deforms the centered balls in a somehow homogeneous way. M. Shishikura
has a counter-example which shows that the proposition becomes false if the
condition (12) is not satisfied.

Condition 1 can be stated in an equivalent but more useful form:

Lemma 4.2. The following two conditions are equivalent:
1. X is a closed subset of AXE;

2. For each Ay€ A, the set X(A,) is closed in E and for all r>0, and lim 6(X (A),
A=A
X (40))=0.
We leave the proof to the reader.

Proof (of Proposition 4.1). Without loss of generality, we may assume 4,=0.
a) By Condition 1 and Lemma 4.2, fix any r>0 we have

lim 8(X (1), X,(0))=0.
A—=0

Let us prove now
lim 4(X(0), X (4))=0
A0
by using the dense set of continuous sections of the Condition 2. Denote by V,(¢) the

e-neighborhood of dD,. Since X (0) is compact, and A is dense in X(0) by
Condition 2, V&> 0, there is a finite number of points x;, x,, ..., X,, in A such that

X,(0)C V(e/2)0 ( 0 D, e/z)),

where D(x;, ¢/2) is the ball centered at x; and with radius ¢/2. Now for each i, 3,>0
small enough such that when ||| <#,, we have

d(hy (), x)) <&/2
$0
d(x;, X(A)<¢/2.
Hence Ve>0, for ||A| <n=min{n;}, Vxe X(0)nD,, we have
d(x, X A) =d(x, X(A) = | x —x;[| +d(x;, X(A) <e

for some i, hence §(X,(0), X, (1)) <e.
b) Set M(n)=L(0)"- SM and let r>0 be smaller than ' required in Condition 3.
Our proof consists of two steps:
b1) 6(M,(n), X ,(0))—=0 when n— 0.

We are going to prove that for each ¢ >0, there is N >0, such that for n> N, and
for

L(0)y*- SAe M(n)nD,
we have
| L(0)" - SA— L(A)"'u(A)|| <e/2 (15)
A(L(A) "u(2), X,(0) <¢e/2, (16)
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and as a consequence

d(L(0)" - S4, X,(0))

S|ILO)" - SA— LAY w(A) | + d(L(A)"u(4), X (0)) <e. (17)
Let y=L(0)*- SAe M(n)nD,. Then A=S"'L(0)""y. So
Al <S™1 - | LO)~||" r SCus (C is a constant). (18)

Proof of (15). We have

I1LO)" - SA— L(A)\u(A)|
S ILO)" - SA—LO)y'w(A) + | LO)"u(4) — L(A)u(A)] . (19)

And by using Condition 3 and 4 and the inequality (18), we get

I1L(0)" - SA—LOYu(A)|| = [ LO)" - | SA—u(A)|
SCui - AP S Copt - u3"=Cop”, (20)

n—1
=X ILOI"= = I LA ILA) — LO) - lu(A)]
SCampy AP S Canpti ™ 13" = Csmp” 21

|LOYu(i) — LGy ()|
'S (O LUY ~ LY LYl

where C; are constants. Since lim y"= lim ny"=0,from (19),(20), (21), we get (15).

Proof of (16). From (15) we have
LAY u()| <r+e/2.

Choose ¢ sufficiently small such that r+ ¢ <r'. Suppose A€ M. We have u(1) e X (1)
hence

LAY'u(M)e X(2).

If L(A)"u(2) e V,(¢/2) [recall that V(e/2) is the &/2-neighborhood of éD,], then
(16) is true. Otherwise

Ly u(l)e X,().

According to part a) (X ,(4), X,(0))—0 when 1—0. So to prove (16) we need to
show A—0 when n—oco. But this is guaranteed by (18).

From (15), (16), we get (17). In other words: Ve >0, 3N >0, such that Yn> N,
Vye M, (n), we have d(y, X (0)) <e, hence (M, (n), X,(0))-0 when n—oo.
b2) 4(X,(0), M, (n))—0 when n— oo.
b2.1) Let us prove at first that for each xe AnD, we have d(x, M,(n))—0. By
Condition 2, there is a continuous mapping h,.:4—E with h(0)=x and
h(A) e X(4). Lemma 4.3 below will show that fixing any neighborhood 4’ C 4 of 0,
there is N’ >0, such that for each n > N’, the next equation has at least one solution
in 4"

u(A)—L(A)""h(2)=0, 22



604 TAN Lei

i.e. there is A,€ 4, such that
h4)=L(4,)"u(4,). (23)
Now we have automatically 4,e M, and hence L(0)"S4, € M(n). Therefore
d(x, M (n)) = d(x, M(n)) < | x — L(0)" - S4,|

= 1x = Al + I L(A,)"u(d,) — LO)" - SA, || =1 1(m) + I (n). (24)
Let us prove at first
I(n)= | L(A,)"u(2,) — L(0)" - SA,|| >0 when n—o0.
Since L(4,)"u(4,)=h.(4,), and h, is continuous, we can suppose
IR (4,)] = sup IhDIl <ry <t

for some r; >0. Then
[l = | L(An) " Al S | L0 ™" Srypt (25)
By Condition 4 of the proposition, we have also
IS1- 1A < llud) | +ClA)2.
Take a< ||S||C ™1, then for ||A| <a, we have
ISI- 1AL 1w + CallAll -

Hence
14l = Collu(A)] - (26)
Combining with (25), we get
14,1 = C'ii 27)

(C, Cy, C' are constants). Hence for 4’C D(0, «), the solutions A, of (23) also verify
(18). By using the results of (19), (20), (21) we get that for ¢ >0 and n>max{N, N},
the formula (15) holds for 1, i.e.. I,(n)<¢/2.

From the continuity of A, and (27), we may also assume that under the same
condition for n,

Ii(n)=lx—hA)ll <&/2.
Hence I,(n)+1,(n)—0 when n—oco. From (24) we get finallly
d(x,M,(n))»0 when n—oo.

b2.2) For the general case, let us do as in a). For each £>0, choose {x;} a finite
subset of AnD, such that

X,0)CVle/2)u |) D(x;¢/2),

and choose n large enough such that Vx e X,(0), we have
d(x, M,(m) = | x — x| +d(x;, M,(n)) <&
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for some i. Hence
0(X,(0), M,(n))—0

when n—o.
¢) This is a direct result from part b), by taking O<s<r/||S|. O

The lemma below we needed in the proof of the theorem is in fact a topologi-
cal result, which says that under small perturbations a continuous mapping
does not lose zeros.

Lemma 4.3. Let A' CE be a neighborhood of 0, and u: A'— E be continuous, u(0)=0,
Tou=S exists and is non-singular. Then there is n>0 such for any w:4'->E
continuous with |w(x)| <, the mapping u+w has at least one zero in 4'.

Proof. There is >0, such that S,={x € E| ||x|| =¢} is contained in 4’, the set u(S,)
does not contain 0 and the induced mapping

Uy Hy_((S)—H,_(E-{0})=Z
is an isomorphism (where k is the real dimension of E and H; is the j® homology
group). Let

n =1nf{]|u|| |ueSc} ‘

Then for w: 4—E continuous and |w(x)|| <7, we have u+w:S,—E—{0}, and the
induced mapping (u+ w),, is also an isomorphism, since u+ tw gives a homotopy
between u and u+w. We claim then u+w has zeros in D,={x € E| HxH <¢}. If not,
(u+w),: H(D)->HJ(E— {0}) =Z would be trivial homomorphlsm since u+w is
continuous on D,, and H(D,) would be trivial. This is a contradiction. []

To induce (22) from this lemma we choose N such that if n> N then

h,(4)
L(y’

<n, Vied.

Remark. If u and w are C-analytic, then under the same condition u+w has a
unique zero in D, for small e.

5. Similarity Between M and J, for ¢ a Misiurewicz Point

In this section we are going to apply the result of Sect. 4 to show the similarity
between the Mandelbrot set M and the Julia set J, for ¢ a Misiurewicz point.

Recall that under f,:z+>z%+c the two sets K, J, are completely invariant.
Hence 0e K, if and only if c=f(0)e K.. We can then express the form of the
Mandelbrot set by

M={ceC|ceK,}. (28)

Recall that ¢ e € is a Misiurewicz point if 0 is eventually periodic for f, but not
periodic, and in this case K, =J,. According to Corollary 3.5, J, is asymptotically
self-similar about ¢ with a scale ¢ and with a certain limit model Z. We will prove
that M is also asymptotically g-self-similar about ¢ but with the limit model AZ, for
a certain complex number A. In other words,
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1. M is asymptotically self-similar about c;
2. M and J, are asymptotically similar about ¢, up to a multiplication by a
complex number.

Or to be more explicit:

Theorem 5.1. Let ¢, be a Misiurewicz point. Then there are g, with |go|>1, 1, 7,
§>0, a closed set ZCC with ¢oZ=Z, and Ae C— {0} such that

lim (007- o/ =2, (29)
hm (Q’(‘)T_CQM)TI = (AZ)r' ] (30)
and
lim  dy(tr_ o M, th-T_ o Jo)=0. (1)
teC,t—

The precise form of g, 4, Z will be given in (32), (37), and (36).

Proof. We will apply Proposition 4.1. Since K, and J, are not self-similar about c,
but only asymptotically self-similar, we have to adapt the situation at first.
Let | be the minimal number such that f(c,) is periodic and let p be the period

of fl(co)- Set ap=f(co)) and
Qo= (fcﬂ)l(“o) . (32)

We have |go|>1 and ( fc’o)’(co) +0and J, =K, According to Theorem 3.2 the
invariant set K, is asymptotically g(c,)-self-similar about oco, with a certain limit

(fc)( (g - ok

Since a, is a repulsive periodic point of f,, it is “stable” with respect to the
parameter. In fact, applying twice the implicit function theorem, we can find a
neighborhood W of ¢, in € and two analytic functions

o W-C, c—a),
viW-C, c—¥c),

model X(c,), and about ¢, with the limit model Z =

such that
alcg)=0g, V(Co)=Co,
Loe)=ac), frAc)=ulc), (£YM)*O0,

and g : c—o(c) =(fFY(a(c)) is analytic in W with |o(c)| > 1 for all c e W. According to
Theorem 3.2 the filled-in Julia set K, is asymptotically o(c)-self-similar about a(c)

with a certain limit model X(c), and about v(c) with the limit model X(c).

1
(fY(v(e))

We need now an extension “with parameter” of Lemma 3.3:

Lemma 5.2 (high dimension case of Lemma 3.3). Suppose that U is a neighborhood
of (Ag,oto) in C"*1=C"xC. Let G:U—-C"*! be a holomorphic function with
G(,2)=(4,8x2)) and G(Ag,%o)=(Ag,%,). Assume |g; (co)l>1. Then the sequence

of mappings
D,: (4 2)— (4, (g2 A))(gr V(D) —(A), n=12,...
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converges to a holomorphic mapping ®:U  —»C"**, where U, CU is a neighborhood
of (Ao, %), a(4) is the implicit holomorphic solution of g,(z)=z satisfying a(A)= 0,
and g7 ' is the local inverse of g,. The mapping ® has the following form

D(4,2)=(4, ,(2))
with @A) =0, y((A)=1 and
?:(8:(2))= g D) - 9,(2).

According to this lemma the linearization mapping ¢, of f, about a(c)
varies analytically with respect to c. In other words, the mapping

¢:(c, 2)(C, @d2)),  (co, %) (Co, 0)
is analytic in a neighborhood of (¢, &,). Since (¢, x)— (c, f(x)) is also analytic, the
mapping

D:(c, ) (e, 9c0 £(2)),  (cos o) (co,0)

is analytic in a neighborhood U of (cy, ¢o).
Choose r>0 and restrict W if necessary such that W is closed and

®(c,c)e D, x W CD(U).
Set consequently
Q=0 Y(WxD,),
Q.={zeCl(c,2)e 2},
K={(c,z)|ze K},
X(©)=0.° L(K.NQ),
and
X=0(KnQ)={(c,x)|ce W,xe X(c)}.
Then Q is closed in € x €, Q. is closed for each ce W, and
ceQ, foreach ceW. (33)

Moreover, we possess an important property of K proved by Douady and
Hubbard:

Proposition 5.2 ([DH1], exposé no. VIII). The set K is closed in C x C.
Now we are ready to apply Proposition 4.1 to XCW x €. Set E=C, 4=W,
u:W-C, c—olfic)
and
M,={ce W|u(c)e X(c)}.
Then u(c,)=0 and
M,={ceW|o. fc)€p o fK.NQ)}.
But from (33) we have ce 2, as soon as ce W, so

M,={ceW|ceKnQ}={ceW|ceK}=MnW.
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Hence M, is exactly the Mandelbrot set M in a neighborhood of ¢,. Let us checck
the conditions of Proposition4.1 now:

For Condition 1, since K is closed (Proposition 5.3), Q is closed, @ is analytic so
the set X =P(KnQ) is closed in € x € as well.

For Condition 2, we have at first J, =K, that repulsive periodic points are
densein J ., and that each repulsive periodic point x is “stable” with respect to c. In
fact, by the implicit function theorem, there is a neighborhood U, of ¢, an analytic
mapping h,:U,—~C with h(c,)=x and h.c) a repulsive periodic point of f..
Hence h,(c)eJ.CK,. Hence there is a dense set of continuous sections in K at
(co» Co), SO does the set X at (¢, 0). This gives Condition 2 for X.

For Condition 3, set L(c)=g(c)I. Then X(c) is L(c)-self-similar at 0, and

1L(c)— Lico)ll = le(c) — e(co)l = O(lc —col),
IL{colll - 1 L(co) ™12 =lgol *lool ~* =lgol =" <1.

Condition 3 is then well verified.

For Condition 4, since u is analytic, Eq. (13) is automatically verified. To check
u'(co) #+0 is the main difficulty here. We will do that in Lemma 5.4 below, by using a
non-trivial result of Douady and Hubbard. Moreover, we will get the following
explicit form of u'(c,):

d d
W)= QU= e (D emrs— e @Dy B4

Hence all the conditions of Proposition 4.1 are verified. From (14) we can
claim then that MAW=M, is g(c,)-self-similar about ¢, and the limit model

is —71——X (co), 1.e. there is r>0 such that
w'(co)
lim (e(co)"z-.eM), = ( o) X(Co)> (35)

Recall that X(c,)= ¢, ° f(K,,) is the limit model of K, ,=J,, at a(co) = f(co),

X(c,) is the limit model of K, at ¢,. In other words, set

1
" ey

X(co)= © feoK o) = (Keo) (36)

1 1 1
= (F2Y(co) (D) (co) o D) (co) P

we have:

lim (Q'(’)T-co’]co)r = Zr .
That is (29). In (35) substitute u'(c,) by its explicit form (34) and X(c,) by (/1) (co)Z,
we get finally (probably for a r' < r):

lim (g(co)'s_ooM), = Yo z
n—o 1 _ =
% (.f; (C))|c=00 dC (a(c))l(_':co .
This is Eq. (30) of the theorem, with

d d '
o == 32 @Demey
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Equation (31) is a direct consequence of (30) and (29) according to Proposition

22. O

Lemma 54. For u: W—C, c— ¢/ fXc)), we have

d d
w(co)= 5 (felePle=co= 77 (Dle=co (38)

and

u'(co)*0.
Proof. Set B:C—C, c— fio)=f**(0)and w: C—>C, c— £ 1 TP(0)— £+ 1(0). We

have f(cy)=u, and w(cy)=0. We will see

u'(co)=f(co) —a'(co)= w'(co)

1
o(co)—1
and w'(co) 0.

Set F(c, z)= @ (z), where ¢, is the linearization mapping of f, about o(c). Then
u(c)=F(c, f(c)) and

oF OF
u(co)= =~ — Pl
. ° 0 (co, @0) 0z (co,20) ?
Since

OF
a = (p(,:o(ao) = 1 s
0z (co, x0)

QE - hm F(C, ao) - F(c()’ ao) — hm F(c, ao) — F(C’ a(c))

dc (co, @0) €=¢o C—Co c=co C—Cy

oF , ,
= 6—2 (co,20) o (c0)= - (CO)

[since F(cy, ao)=F(c, a(c))=0], we have then u'(cy)=f'(co)—®'(co);
w(c)= f2(f¢H0) — fH(olc) + o) — £ 1(0),
o MOy _ o BlO)—olo) < SABEO) ~ 2040 _ 1)
eveo C—Co ¢ee C—Co Blc)—afc)
=(B(co)—a'(co)) (e(co)—1).

The fact w'(c,) #0 is not evident and is proved by Douady and Hubbard. They
have in fact several proofs about that. One is stated in the last corollary of [DH1],
another one is an arithmetic method and is inserted in [DH3] (Lemma1 of
Chapter V). [

Theorem 5.5 (Review). Let us summarize now the main steps to prove the similarity
between M and J.. That is, the main steps of the adaptation of the Misiurewicz case
to the assumptions of Proposition4.1.

Assume that c, is eventually repulsive periodic under the iteration of feo (ie.cqis
a Misiurewicz point ). Let I, p be the minimal integers such that f( fCO(co)) fm(co)
Set ag=fi1(co) and go = (f2) (o). Then for c varying ina nezghborhood Wof ¢oinC:
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1. There is a unique repulsive periodic point o(c) of period p for f, such that c+—a(c)
is analytic and a(cy)= oy, let o(c)=(fF)(c)), the mapping c— g(c) is analytic with
o(co)= 0o (implicit function theorem);

2. K, is asymptotically o(c)-self-similar about ofc) with a certain limit model X(c),
provided that it is completely invariant under f, (Theorem3.2);

3. There exists a conformal mapping (the linearization mapping ) ¢, defined in a
neighborhood of ofc) in € with ¢ ac))=0, @lxc)=1, ¢(K)=X(c), and
(¢, z2)—(c, o [2)) is analytic in a neighborhood of (co, o) in €CxC (Lemma3.3,
Theorem 3.2 and Lemma5.2);

4. The set K={(c,z)|ze K} is closed in W x € (Proposition 5.3). This gives
Condition 1 of Proposition4.1;

5. K., =J,, (Proposition 3.1). This gives Condition 2 of Proposition4.1, provided
that repulsive periodic points are dense in J,;

6. Condition 3 of Proposition 4.1 is a consequence of 2 and 3;

7. For u:c— @ flc)), we have MnW ={ce C|u(c)e X(c)}=M,;

8. u is analytic and u'(co)+0 (Lemma 5.4). This gives Condition 4 of
Proposition4.1;

9. M is asymptotically gy-self-similar about c, with the limit model (1 3 X(co)
( Proposmon 4.1);
10. (fiLy (co)=l=0 and K, about c, is asymptotically g,-self-similar, with the limit
model ———— X(c,) (Theorem3.2);

(fco)( Co)
11. Finally M about c, and K, about c, are asymptotically similar, up to a
multiplication by (fc"()( )0) (consequence of 9 and 10 and Proposition2.2).
Co
To simplify the notation, denote by X(c,), Y(c,) and Z(c,) the limit model of K .
1

at a,, of M at ¢, and of K at ¢, respectively. We have Y(co)= —— o) X(co) and
Z(co)= ——— X(cop)-

€= Gy X
Examples

1. Two spirals. We see a lot of spirals in M. The point ¢~ —0.77568377
+0.13646737i is a Misiurewicz point which is chosen so that M has a two spiral
shape near c. Figure9a is a magnification of J. around ¢ and Fig.9b is a
magnification of M around c.

2. Triple point. The point ¢= —0.1011+0.95629i is the 3-fold bifurcation point
near the top of the Mandelbrot set. It is also a typical Misiurewicz point. In this
case, [=3, p=1,

a=(1/2)(1 —/T—4c)~ —0.3276 +0.57776i,
0=20~ —0.6552+1.15552i,
w()~ —4.7515+2.06497i,  a=(£3)(c)~ —6.4464+0.1808i.

In other words: |o|~1.328, arg()~119.6°, |u'(c)|~5.1808, arg(u'(c))=156.51°,
|a] ~6.4489, and arg(a)=178.39°. Figures 10a are two successive magnifications of
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a X
Fig. 9a, b. Magnifications of J, an
width: 0.00018. b M, center: ¢, width: 0.00024

c
Fig. 10a—d. Magnifications of J, and M around ¢= —0.1011+0.9563i. a J, center: «, width: 0.01,
rotation: 0. b J_, center: &, width: 0.00753, rotation: 119.6°. ¢ J,, center: ¢, width: 0.00155, rotation:
178.39°. d M, center: ¢, width 0.00193, rotation: 156.51°

J. centered at o with the magnification factors differed by ¢. Figure 10c =Z(c)
= X(c)/a. Figure 10d = Y(c)=X(c)/u'(c). With these carefully chosen factors, we
can not distinguish M and J_ any more.

3. Let us take the example of c =i again. Recall that for f;:z—>z%+i, we have [=1,

p=2,a=i—1, g=4]/§e""4, and (£ (c)=(f;)(i)=2i. For the value of 1, we have
d 1 — d 2 — g ¥
i (fe@e=i= i € +)e=i=Q2c+1)].=;=2i+1.

The function a(c) is the solution near i—1 of the implicit equation
Hz)=z, ie. (Z2+c)?+c—z=0
for ¢ close to i. Hence

2i—1)*+i)+1 _2i—1
i—1)24i)-2(—1)—1  4i+3°

d
Ze COk=i=— 57
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a b
Fig. 11a, b. Magnifications of J; and M around i. a J;, center: i, width: 0.0001, rotation: 0. b M,
center: i, width: 0.0001 x 1/5/2; rotation: —26.565°

Then
PR SIS )
2i+1—2l“1 2
4i+3

In other words, |i|=]/§/2z1.118 and arg(1)~26°565. Figure 11 shows the
similarity between M and J;.

Figure 12 generated by Peitgen, Jirgens, and Sauper ([PJS]) shows the self-
similarity of M about i in another way. By our result, the set M should be almost
unchanged if we make two powerful blowups centered at i with the factors differed
by 41/5. and by a rotation 7/4. If we just blow it up successively by 4ﬂ without
rotating, each one would differ by a /4 rotation from the last one. Hence after
eight magnifications, we would see almost the same set. Compare for example
Fig. 12-4 and Fig. 12-12. Do you see any difference?

It seems that M does not spiral at i. But that is our human eyes’ mistake. The
rotation angle /4 explains well that there is a spiral there. The reason that we can

not “see” it is because the absolute value of ¢ which is 4ﬂ is too large with respect
to its angle n/4, so that the spiral is “absorbed” by the center. For example, take a
point x on the positive real axis. Then x/o® is again a positive real number but its
value is decreased by a factor 1/2%4! It is so close to 0 that human eyes cannot
distinguish them any more. As an experiment, we take the spiral

As)={elos*mIP¥| — o0 <x < + 00}

which is blowing-up-invariant by the factor g =se™*. The two pictures in Fig.5
(s=12and s =41/§) show how the spiral “disappears” as s increases.

6. Other Results

To end this paper we give a rough description of some other similarity problems.
We will see that for our definition of similarity the Misiurewicz points are the only
interesting case.

6.1. Small Copies of M Converging to a Misiurewicz Point. By looking at the
Mandelbrot set one realizes easily that it contains a lot of copies of itself. Eckmann
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r
10 r 11 12

Fig. 12. 12 successive magnifications of M as indicated by the inserted frames. Center: i. Width of
the first picture: 0.5656854 ~0.1 x 41/5. Magnification factor: 41/5



614 TAN Lei

and Epstein ([EE]) and Douady and Hubbard ([DH3]) have studied the existence
and the scaling property of small copies of M near a Misiurewicz point. More
precisely, for each Misiurewicz point ¢ € M, there is a sequence of copies M,,C M of
M converging to ¢ geometrically with the ratio 1/¢ (where ¢ is equal to our
similarity scale for M about c), and the diameter of M, decreases to 0 also
geometrically, but with the ratio 1/|g|*>. Hence diam(M,) decreases faster than the
convergence of M, to c. This is compatible with our result that the limit model of
M at ¢ has no interior point.

6.2. Some Trivial Cases. Using our definition of similarity one can check about
other points too. But sometimes the situation is more or less trivial so that it might
be better to analyze other notions of similarities.

Here is a list of the trivial cases:

1. Attractive periodic points in K, and hyperbolic components of M.

Suppose that f is a monic polynonnal and x is an eventually (super)attractlve
periodic point. Then x € K rand K g is self-similar about x. In fact K , is trivially self-
similar about any point y of K ;»since for r small enough we have (_ K ), = D, for
every s<r.

Similarly, the Mandelbrot set M is trivially self-similar about any point ce M.
Specially, for ¢ in a hyperbolic component of M [i.e. f, has an (super)attractive
period cycle], M and J, are trivially similar about c.

2. Rational indifferent periodic points in J, and parabolic points in M.

First of all we observe that any two curves tangent at a point x are
asymptotically similar about x. Furthermore any closed set in € limited by two
tangent curves is asymptotically self-similar about that point, with the common
tangent line as the limit model.

Suppose that x is a rational indifferent periodic point for f; (for example, x =«
in Fig. 3d). Then xeJ, and there are finite petals in K,u{x} located one-by-one
tangently around x ([B DH2]). Hence the Julia set is limited by tangent curves and
is asymptotically self-similar about x.

A point ceC is called parabolic if f, has a rational indifferent cycle. Then
ce0M and c is in the boundary of either one or two hyperbolic components
([DH2)). If ¢ is on the boundary of two hyperbolic components, the two
components are tangent at ¢ with tangent order two ((DH2, T1]), consequently
0M and M are asymptotically self-similar about c. If ¢ is on the boundary of only
one hyperbolic component W of M, W has a cusp at ¢ ((DH2]) so dM in a
neighborhood of ¢ is again limited by tangent curves and then is asymptotically
self-similar about c.

6.3. Feigenbaum Points. The Feigenbaum points form a different set of boundary
points of M. The classical Feigenbaum point is the limit point of the period
doubling sequence on the real axis starting at ¢= —1, which is first studied
experimentally by Feigenbaum and GroBmann and Thomae. According to a
theory of Douady and Hubbard ((DH3]) M contains infinitely many small copies
of itself. Moreover, for each point ce M such that f, has a superattractive orbit,
there is a homeomorphism

p:M—-clMCM

with w(0)=c and d(c L M)C dM. The point ¢ L x is called the “tuning” of x by c. We
can then consider the sequence ¢,cLc, clclec, ... and see if it converges, i.e. if the
infinite tuning exists. We call the eventual limit point a Feigenbaum point. For
example the above classical Feigenbaum point corresponds to the infinite tuning
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Fig. 13. M and J, around ¢, where ¢ = —0.745429 +0.113008i. See also [PS]

of c= —1. Feigenbaum has conjectured that the limit point for c= —1 exists and
the sequence c,clc, cLclec,... converges geometrically. A more general conjec-
ture is:

Conjecture 1. For every point ¢ such that f, has a superattractive orbit, the
sequence

¢,cle,clcele,...

converges geometrically.

Some special cases of the conjecture including the case c= —1 have been well
studied and confirmed. Here is a list of references: [CE, CEL, EEW, EW, GSK, and
L].

Denote by ¢** the limit point and & the inverse of the convergent-ratio. We
have |6|>1. Milnor ([M]) has made some computer experiments on the local
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structure of M about ¢*® and has suggested that M should be asymptotically
measurely self-similar at ¢*® with the scale é. In other words,

Conjecture 2. There is a measurable set X such that (6"(r_...M)), converges
for the Lebesgue measure to X. The set X is not closed, is everywhere dense but
may have small measure.

The fact that X should not be closed excludes any application of the
Hausdorff-Chabauty distance.

6.4. Peitgen’s Observation. H.-O. Peitgen ([PS]) has observed experimentally
another similarity phenomenon between M and K (Fig. 13): for some value of c a
magnification with a carefully chosen power (neither too small nor too large) of M
and J, about ¢ gives very similar images. This phenomenon is different from what
we did in this paper because the means of similarity is rather local but not
asymptotic.
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